

4-1 305-CD-027-002

4. PRONG - Processing CSCI

4.1 CSCI Overview
The Processing CSCI is responsible for the initiation, managing, and monitoring of the execution
of science software algorithms. These science software algorithms are identified to the Processing
CSCI through a PGE. From the ECS Glossary, a PGE is defined as "a set of one or more compiled
binary executables and/or command language scripts; it is the smallest unit that can be scheduled
for the Product Generation System (PGS, now the Planning and Data Processing Subsystems)
processing." A PGE is equivalent to one processing job which requires the use of the Data
Processing Subsystem's hardware and software resources. Generally, a PGE will be used for the
generation of ECS Data Products, but a PGE may be defined to perform other types of processing,
such as pre-processing of input data or the quality assurance processing of generated Data
Products. PGEs that generate data products and perform quality assurance are provided by the
Instrument Teams and algorithm developers. The Processing CSCI is informed of the required
execution of a PGE through a Data Processing Request message received from the Planning CSCI.
The Processing CSCI will not initiate the execution of a PGE until all necessary data required as
an input to the PGE is available. Available in this context means that the data exists at a Data
Server, not necessarily the on-site Data Server.

In support of the execution of the science software algorithms, the Processing CSCI has the
following responsibilities:

a. Manages the science software algorithm execution process.
b. Manages Science Data Processing computer hardware resources efficiently.
c. Manages the flow of data required to execute a science software algorithm.
d. Manages the flow of data produced by the execution of a science software algorithm.
e. Provides an Operational interface to allow monitoring of processing status, and manual

intervention, when necessary, into Science Data Processing operations environment,
including processing queue control.

f. Provides an Operational interface to support the quality assurance of generated data
products.

4.1.1 Processing CSCI Design Rationale

The Processing CSCI detailed design, as presented, is meant to provide a framework to build a
robust science data processing system. This detailed design has taken the concepts expressed in the
Data Processing Subsystem sections of the SDPS System Design Specification and the SDPS
Preliminary Design Specification and expanded, improved, and modified these concepts to reflect
the current state of the Processing CSCI design.

This detailed design represents a significant step in providing a basis to continue into the
Implementation phase. By developing the use-case scenarios (see Section 4.5, Processing CSCI
Dynamic Model), the design has established the boundaries of the Processing CSCI software,
allowed the identification of problem areas, and the resolution of these problem areas. These
scenarios will now be used as guidance for implementation.

4-2 305-CD-027-002

The Processing CSCI design rationale has been influenced by a set of design drivers. These design
drivers have greatly influenced the decisions which have been made as the design has matured
since the System Design Specification and the Preliminary Design Specification for the ECS
Project. The following design drivers have been identified:

a. Separation of Planning and Processing—The roles and responsibilities of the Planning
CSCI and Processing CSCI have been separated to support future evolving aspects of these
functions.

b. Data Driven System—The Processing CSCI does not activate a Data Processing Request
which requires execution until data is available to support the execution of the PGE
associated with Data Processing Request.

c. Priority Driven Data Processing—As a Data Processing Request is input into the
Processing CSCI, this Data Processing Request has an assigned priority which is
determined in the Planning CSCI. This priority is based on the production rules used to
generate the production plan which is currently active. This priority is reflected by the
production policies at a DAAC.

d. Development of user interfaces—The amount of support to provide the different classes of
users, i.e., Operations, Instrument Teams, and remote users, has influenced how
information is to be provided to each type of user. The need to support a secure operations
environment is quite evident.

e. Exception handling—The capabilities to support recovery from the faults associated with
the failure of a resource or a PGE are provided to support efficiency in the science data
processing environment.

f. Extent of automation vs. manual supported operations—To support an efficient Science
Data Processing environment, a number of decisions have been made in the design to
reflect the need to increase the amount of automated decision making required. This is
driven by the need to support the generation of data products in an attended (by Operations
staff) or unattended mode.

g. Dynamic aspects of Planning and Processing—Both Planning and Processing software
must have the capability to react to real-time events, i.e., PGE failures, resource failures,
etc., which have affected the active production plan and the queue of Data Processing
Request Jobs awaiting execution in Processing.

Each of these design drivers has impacted the framework of the Processing CSCI design. To
emphasize their impact in the different functional areas affecting the design, a description of the
design in certain areas and the underlying factors affecting the design has been provided. These
descriptions are in the following sections:

a. The division of the Planning and Processing CSCIs
b. Resource Management
c. Quality Assurance
d. Processing Error Architecture
e. Processing/Planning Interface
f. Processing/MSS Interface
g. Processing/Data Server Interface

4-3 305-CD-027-002

The information provided in the following sections on the above listed topics is meant to
summarize important aspects of the Processing CSCI detailed design. More information on these
areas and the resulting impact to the detailed design is contained in the Section 4.5, Processing
CSCI Dynamic Model, which contains a set of scenarios used to define the roles and
responsibilities of the Processing CSCI.

4.1.1.1 The Division of the Planning and Processing CSCIs

The division of the Planning and Processing CSCIs was influenced by the following factors:

a. Follows Client/Server Architecture—Planning acts as the Client, and Processing acts as the
Server. Planning is responsible for developing a Production plan and informing Processing
which activities must be executed as listed in the Production plan.

b. Increases Fault Tolerance of the Planning and Data Processing Subsystems—By separating
the Planning services from the Processing services, an increase in the fault tolerance of the
Planning and Data Processing Subsystem software is achieved. The failure of the Planning
Subsystem will not cause an immediate breakdown in production processing. Processing
will be able to continue with production processing until the processing queues are
depleted. Also, a failure of the Processing CSCI or Processing Hardware will not cause the
Planning Subsystem to fail. Although the flow of information from Planning to Processing
and Processing to Planning will be interrupted, this should not affect the overall production
plan.

c. Evolvability of the roles and responsibilities of Planning as ECS becomes operational—
The separation of Planning services from Processing services allows for different
configurations of Planning services and Processing services. For example, there may be
some special event which would result in the Planning services of a DAAC creating a
Production plan for itself as well as other DAACs. By separating Planning from Processing,
this becomes an easier problem to resolve.

Each of the above items has influenced the separation of Planning services from Processing
services. This separation will support the general concept of the changing roles of Planning and
Processing as ECS matures.

4.1.1.2 Resource Management

The Resource Management capabilities as presented in the Processing CSCI detailed design have
been influenced by the following design drivers:

a. Efficient use of computer resources is required to support Production Processing—The
Processing CSCI is responsible for the allocation of resources, i.e., disk space, memory,
and CPU, to execute a PGE. To perform this role, Processing relies on MSS to provide up
to date (pseudo-real-time) information on the health and overall availability of Data
Processing Hardware resources. This information is provided by MSS SNMP monitoring
agents which will be located on each science processing resource platform.

The Processing CSCI allocates disk space, memory, and CPU to support the execution of a
PGE. The PGE resource profile information for allocating disk space, memory and CPU
are established during the AI&T time frame and will undergo updates as the science
software matures in the science data processing environment

4-4 305-CD-027-002

 Before a PGE begins execution, all required resources must be available. This means that
enough disk space and sufficient CPU must exist to support execution. These resources will
be allocated to only support the execution of a given PGE. Also, as required through the
Planning CSCI, all input data is available before initiating the PGE. This will alleviate any
deadlock situation where a PGE is awaiting some input data file or awaiting the use of a
given resource currently in use by another PGE. Also, during execution monitoring,
Processing will monitor the use of the allocated disk space, memory, and CPU as a method
of fault detection.

b. Automated recovery from resource faults—Processing plays a limited role in resource fault
recovery. Processing is responsible for protecting the state data maintained in the
Processing software and for insuring that the execution of a PGE can resume upon the
recovery of a resource. When a resource has failed, the Processing CSCI will inform MSS
of the failure and update the resource management information associated with the failed
resource to indicate that the resource can not be allocated for processing. Also, MSS will
inform Processing that a resource is unavailable and when the resource is available again
for processing. This interface is intended to be two way.

 c. Reporting of resource fault and other information—Processing supports fault reporting in
two distinct ways:

1. During PGE execution—While a PGE is executing, information is collected from the
execution of the science software through the use of a Status Message File. Processing
will inform MSS about resource-specific faults. To recover from a resource fault, the
Processing CSCI may determine if the PGE can be executed on another resource which
is capable of supporting the execution of the PGE. This will be done by allowing the
Data Processing Request Jobs to re-queue into the queue supporting the other resource.
For a science software fault, Processing will use return code information provided by
the PGE to determine the necessary steps to take for recovery purposes.

2. Processing SW specific—If an event for which Processing is responsible (i.e., data
staging, data destaging, execution environment monitoring) indicates a possible
resource-specific fault, Processing will inform MSS.

d. Logging of resource fault and other information—Resource fault and usage information
will be logged for accounting, performance, and accountability purposes. The resource
usage characteristics for a PGE will be updated and used for future Production planning
purposes. Fault information will be used to determine if faults are re-occurring frequently.
The logging of resource management data is performed by MSS. Processing will assist by
providing system management information to MSS.

4.1.1.3 Quality Assurance

This section briefly describes quality assurance and the support provided by SDPS. Four types of
quality assurance will be supported by SDPS.

4-5 305-CD-027-002

a. In-Line QA. This service is provided through the production environment. This is the
automated quality assurance processing that can be provided by a PGE executing a quality
assurance algorithm which only performs automated quality assurance on a generated
product. These quality assurance PGEs will be provided by Instrument Team algorithm
developers.

b. DAAC QA. Two capabilities exist for performing QA at a DAAC: DAAC manual QA and
DAAC Non-Science QA. Performing a cursory view of products after using the Data
Server subscription service to request products to view is called DAAC manual QA. The
automated process that evaluates the quality of the production process is called DAAC
Non-Science QA.

 To visualize products requires submittal of a subscription request for products which is a
manual process. Then when subscription notifications indicate that requested products are
available they have to be retrieved from the Data Server. Thereafter, they can be viewed
using a visualization COTS tool. There is also a COTS editor available for updating
product metadata with a DAAC operator flag that indicates QA status of a product.

DAAC Non-Science QA occurs during the post-processing stage of the production process.
Before DPR data are destaged and resources deallocated DAAC Non-Science QA runs. It
collects and reports information about PGE input and output granules and product metadata
on a run-by-run basis.

c. SCF QA. This service is provided through use of the Data Server subscription service. A
user who wishes to perform QA on a product can request a copy of the product whenever
the product is generated by placing a subscription for the data product. Product QA is a
process involving the use of COTS visualization and editting tools. These tools enable
scientists to assist with the analysis of the quality of products and update product metadata
with a SCF operator flag that indicates the QA status of a product.

By using the Data Server subscription service, the Processing CSCI lessens the dependency on
man-in-the-loop activities affecting the generation of data products. Processing SW is being
designed under the assumption that Data Processing must be able to generate products while in an
attended or unattended mode. If the Q/A position is manned when the product is generated, the
product can be reviewed while still on the Data Processing Subsystem storage device. Otherwise,
the Q/A position may have to request the product from the Data Server.

The Processing CSCI will support an interface for visual display of a data product through the use
of data visualization tools, such as EOSVIEW and IDL. Processing will also support an interface
to allow for the update of the Q/A metadata which is associated with a data product.

The design approach was chosen for the following reasons:

a. Based on the Data Processing design approach of allowing for manned and unmanned
modes of operations.

b. Follows Q/A approach for making products available for SCF review. No new paradigm to
support DAAC manual Q/A has been introduced. This leads to maximum reuse of already
developed software capabilities.

4-6 305-CD-027-002

c. Allows man-in-the-loop Q/A activities at the DAAC without serious impact on the
processing resources. This approach would not require manual intervention before
processing of other data products continues. If Q/A position is unmanned, the data products
requiring Q/A review are stored at the Data Server and await review.

4.1.1.4 Processing Error Architecture

This section provides a brief description of the Error Architecture approach adopted by the
Processing CSCI and follows the common error handling approach adopted across all
applications. Error Architecture refers to the mechanisms used for error detection, reporting and
recovery that are incorporated into the design of the Processing CSCI. It provides details on how
the Processing CSCI will react when an error or exception, i.e., hardware or software, occurs
during steady-state processing of a Data Processing Request and the execution of a PGE.

This Processing CSCI Error Architecture approach was influenced by the following factors:

a. Detection of different types of errors, i.e., Science Software (PGE) execution errors,
Processing Hardware errors, and Processing Software errors.

1. The detection of science software errors which occur during the execution of a PGE are
captured by the SDP Toolkit, and are propagated to the Processing CSCI through the
use of a PGE return code status. The Processing CSCI will have knowledge of the error
associated with a given return code, and as a result of this return code, may initiate a
corrective measure, such as alerting the operations staff or restarting the PGE job with
updated diagnostic flags to initiate the capture of detailed diagnostic information. The
definition of these return codes and the resulting corrective measures are an ongoing
activity. Dialogue with Release A instrument teams, i.e., CERES, have led to some
initial definitions. These are currently being defined with more detail and will be
supplied to all instrument teams for more feedback.

 As a result of an unsuccessful return code, the running of Data Processing Request jobs
which were dependent on the PGE that failed would not be executed. This information
would be made available to the Operations staff through the use of the Processing
Operations Interface. Please see Section 4.1.3, COTS Selection, for more information
on the Processing Operations Interface. The Processing Operations Interface is
provided by the selected COTS product.

2. Although MSS will also detect science processing hardware errors, the detection of
Processing HW and Processing SW errors can occur in the Processing SW. Processing
HW error detection will be supported by a group of MSS interfaces used to support fault
tolerance and provide resource management information.

b. These errors must be reported to different user classes depending on the nature of the error,
i.e., IT/Algorithm Developer, DAAC Operations personnel. The IT/Algorithm Developer
users are interested in the detailed error information associated with the execution of a PGE
for the purposes of debugging a problem. This information will be logged in Status
Message Files which are created and maintained during PGE execution by the SDP Toolkit.
While the DAAC Operations personnel is interested in whether a PGE was successfully
executed, the detailed error information will not be provided for review, unless requested.

4-7 305-CD-027-002

Rather, the DAAC Operations personnel will be alerted to the unsuccessful processing, and
the alert information will be captured in the processing log for later use.

c. Recovery actions from errors will differ on the type of error. The recovery from an error
will depend on the type of error. In almost all severe error cases, the recovery action will
be to terminate the event which has suffered the error. This approach is also required to
support minimal human interaction by the Operations staff. This helps support the concept
of Production Processing occurring in an unattended mode.

d. Human interaction requirements to support Production Processing must be minimized. To
support this, almost all errors will be logged and the Operations staff will be alerted.
Depending on whether Production Processing is occurring in an attended operations mode
or unattended operations mode, the operations staff will have the capability to manually
intervene to correct the error condition. Otherwise, the activity will be terminated by
Processing, and a new processing activity will be initiated.

e. Isolation of errors so as not to affect other Processing activities. Science SW processing is
terminated to isolate the cause of the error. Also, Processing HW may be taken off-line to
correct the resource problems to support the isolation of the error condition.

4.1.1.5 Processing/Planning Interfaces

This section provides a brief description of the relationship between the Planning and Processing
CSCIs.

The interface between the Planning and Processing CSCIs occurs through a common shared
database, known as the PDPS Database. The PDPS Database is an RDBMS, SYBASE, and
contains all data which is persistent to applications associated with Planning, Processing, and
Algorithm Integration and Test. The decision to share a common database was driven by the many
common data structures which were apparent in the Preliminary Design Specifications developed
for the Planning and Data Processing Subsystems.

When a Data Processing Request is planned for execution, as represented in the activated
production plan which is created and maintained by Planning CSCI components, the knowledge of
this Data Processing Request is transferred into the Processing CSCI domain. This involves adding
the definition of a series of jobs representing the Data Processing Request to the COTS product
being used to manage production by the Processing CSCI. Please see Section 4.1.3 for more
information on the selected COTS product. As these jobs run, the Planning CSCI is capable of
polling on the COTS product to retrieve status information for a given job.

4.1.1.6 Processing/MSS Interfaces

This section provides a brief description of the relationship between the Data Processing and MSS
Subsystems. A high-level description of the interfaces between MSS and Processing is provided.

The Processing CSCI is dependent on the MSS to provide life cycle services. These services
consist of information related to the following activities:

a. Startup of the Processing CSCI software components.

b. Shutdown of the Processing CSCI software components.

4-8 305-CD-027-002

MSS provides proxy agents which will be used to communicate startup and shutdown commands
to all ECS applications. It is currently envisioned that the MSS proxy agent initiates the PDPS
Database. The startup of the PDPS Database will then initiate the startup of the Processing CSCI
COTS components. The COTS components will then initiate the custom Processing CSCI
components on an as needed basis.

Also, MSS provides mechanisms which enable the Processing CSCI components to provide
system management information, such as system-wide event information, resource fault
information, accounting and configuration management information

, and ECS application fault
information, to MSS for logging purposes and to initiate system-wide error recovery activities.

In support of system resource configuration management, MSS provides resource configuration
information to the Processing CSCI which allows the Processing CSCI to logically manage the
allocation of resources to support science data production. MSS will support the monitoring of
science software by providing fault isolation and performance tools which provide feedback on the
utilization of the science data processing resources.

4.1.1.7 Processing/Data Server Interfaces

The Processing CSCI has an interface to the Science Data Server CSCI to support the staging
(Acquiring of data from the Science Data Server CSCI) and destaging (Insertion of data to the
Science Data Server CSCI) of data. This interface is a client/server interface with the Processing
CSCI acting as the client and the Science Data Server CSCI providing data storage services. The
Processing CSCI requests the Science Data Server CSCI to stage or destage data as required to
support the generation of a data product. The Processing CSCI will inform the Science Data Server
CSCI where the data should be staged (what resource) or where the data should be destaged
(copied) from. The Science Data Server CSCI uses an FTP PUSH to copy the data to the science
processing resources to support staging of data and uses an FTP PULL to copy the data from the
science processing resources to support destaging of data. When the Science Data Server CSCI has
completed this task, the Science Data Server CSCI informs the Processing CSCI that the data has
been staged or destaged successfully. The Processing CSCI is responsible for determining whether
data should be deleted from the science processing resources. When data is destaged, it is
considered a copy operation, not a move operation.

4.1.2 Historical Design Transitions

4.1.2.1 Processing CSCI Design Modifications from Release A PDR to Release B
IDR

After the Release A Preliminary Design Specification was published, a COTS product(s) was
selected which fulfills the majority of the Level 4 requirements. This COTS product has had a
tremendous impact on the design as presented here. The following information will summarize
these design modifications and their rationale. The selected COTS products are Platinum
Technology's AutoSys and AutoXpert. They will be integrated into PDPS to provide the basis for
the monitoring and management of ECS' science data production facility.

All design decisions have been driven by a desire to minimize custom code development, tempered
by the need to provide proper encapsulation of the COTS to insure later flexibility of adding or
modifying the underlying COTS product as ECS matures and evolves.

4-9 305-CD-027-002

As a result of these efforts, some design elements which were mapped to the Planning CSCI at the
Release A PDR have since moved to the Processing CSCI. This has resulted in a clearer division
of the roles and responsibilities of the Planning and Processing CSCIs. As a side effect, the
Planning and Processing CSCIs are now more loosely coupled. This will ensure greater flexibility
in the future.

The following summarizes the design decisions and provides a top-level view of the current
Planning and Data Processing Subsystem Architecture.

1. PDPS will share a common database, i.e., one instance of a SYBASE RDBMS. This will
allow PDPS to eliminate the large amount of common persistent data structures which
existed in the PDPS preliminary design. For detailed information on the PDPS Database,
please refer to Section 4.6.6, PDPS Database CSC, in the Planning Subsystem Preliminary
Design Specification

2. The Production Management CSC which was mapped to the Planning CSCI has been
divided between the Planning and Processing CSCIs. As presented at the Release A PDR,
the Production Management CSC provided two important functions; managing of
subscription notifications from the Data Server and Ingest and managing the active plan by
receiving status feedback from the Processing CSCI. Since the AutoXpert product provides
mechanisms for monitoring and managing the active plan, it was decided to encapsulate the
COTS products into a single COTS CSC within the PRONG CSCI. This will provide a
more consistent and simpler design with fewer interfaces needed between the Planning and
Processing CSCI. Therefore, active plan management is now within the Processing CSCI,
whereas, the management of subscription notifications remains in the Planning CSCI.

3. The interface between the Planning and Processing CSCIs has been modified. This change
involves when a Data Processing Request is made visible to the Processing CSCI. At the
Release A PDR, the approach amounted to not providing a Data Processing Request to the
Processing CSCI until all the data subscriptions, sometimes called data dependencies, were
fulfilled for a Data Processing Request. Because of the selection of AutoSys and its
capabilities to manage job dependencies, this approach has been changed to consist of all
"routine" Data Processing Requests being fed into AutoSys at the beginning of the day. The
Data Processing Requests which do not have all data dependencies fulfilled would be kept
in a "HELD" state until the dependencies are fulfilled. Upon the meeting of all data
dependencies, the Planning CSCI would release the Job. Any On-Demand processing
requests will be fed directly into AutoSys, where they too will be "HELD" until all
dependencies are fulfilled.

4. The software components of the Science Data Pre-Processing CSCI as defined in the
Preliminary Design Specification have been mapped into the Processing CSCI or Ingest
CSCI, based on what is the optimal location to perform these operations. Within the
Processing CSCI, the Science Data Pre-Processing functions have been mapped to a CSC
called Data Pre-Processing.

4.1.2.2 Processing CSCI Design Modifications since Release B IDR

Since Rel B IDR , designs have been modified or added in predictive staging, delayed job creation
and DAAC automated QA (also called non-Science QA) . The added predictive staging

4-10 305-CD-027-002

mechanism stages input data granules which are available before a PGE is released. It predicts the
appropriate time to start the predictive data staging according to historic data on the PGE staging
time and the expected current PGE start time. The delayed job creation design moves all the job
creations except the job box and the resource allocation to the execution of preparation job. This
design helps to reduce the number of jobs that AutoSys has to handle at any give time. DAAC
automated QA allows a check of the production process used to generated an output product.

4.1.3 COTS Strategy

This COTS Strategy section summarizes the objectives and technical approach which was taken to
determine the optimal COTS solution required to support the job scheduling functions associated
with the Processing CSCI management of the science processing resources. There were four
objectives which influenced the decision on the type of COTS products selected;

1) Minimize custom code development

To insure an adequate solution for the Release A time frame, the COTS solution had to
minimize the amount of custom code development which was required to provide the
complete Planning and Data Processing Subsystem software solution. This was
necessary to mitigate the schedule risk associated with Release A which because of
time constraints, would not support a large growth in custom code development.
Carrying the COTS solution over to Release B (where ever possible) further minimizes
code development and relieves schedule pressure on Release B development.

2) Reach COTS decision to support Release A Detailed Design and Implementation Phase.

An early decision on the COTS product was required to insure that the required
modifications to the Planning and Processing CSCI design could be made to support
Release A CDR and to ultimately support the Release A software development
schedule. Carrying this solution over to Release B insures that new functionality design
can be made to support Release B IDR, CDR, and the eventual code development
schedules.

3) Ease of integration into ECS software applications.

The selected COTS product must support command line or API style interfaces to
support the extensive integration efforts which must occur to meet ECS requirements.

4) Scalability to Release B processing load.

The selected COTS product must be capable of supporting large numbers of jobs. This
is necessary to support the Release B processing load.

The adopted technical approach consisted of the following steps:

1) Collecting information about the different types of COTS which could be used to support
ECS Planning and Processing functions;

a) Vendor teleconferences and meetings

b) Customer teleconferences

c) Vendor site visits

2) Determining different types of software architecture given the COTS products and the
unique ECS Planning and Processing requirements.

4-11 305-CD-027-002

3) Analyzing the different classes of COTS packages to determine viability in ECS given the
previously defined objectives.

The information gained in this process was used during the preparation of the RFP (Request For
Proposal). This RFP was divided into mandatory, optional, and implementation features sections.
The responses to these proposals were analyzed and scored based on the information provided by
the vendor for each of these sections.

4.1.4 COTS Selection

The following sections provide information on the COTS products selected to support the
Processing CSCI in performing management and monitoring activities associated with ECS'
science data production environment. The product selected was Platinum Technology's AutoSys
and AutoXpert products. A summary of the AutoSys' capabilities and a scenario which explains
the set of actions taken to initiate a job is provided.

4.1.4.1 Platinum Technology's AutoSys

AutoSys is a job scheduling software application used to automate operations in a distributed
UNIX environment. AutoSys performs automated job control functions required for scheduling,
monitoring, and reporting on jobs that reside on any machine attached to a network. In ECS, the
machines for which AutoSys will be responsible are the Science Processing hardware resources.
In AutoSys, a job is defined as any UNIX command or shell script plus a variety of qualifying
attributes which include conditions specifying when and where the job should be run.

AutoSys provides a complete system solution to support job scheduling. This includes an Operator
Console, which allows human intervention into the AutoSys job stream, and provides various
mechanisms for monitoring the AutoSys job stream. Provided with the interface are capabilities to
view job definitions, change the state of a job, modify the job definition, and alter job dependency
information. Also provided with the Operations interface is an alarm manager. The alarm manager
can be used to assist in monitoring jobs and to react to fault situations. These alarms can be set
through the definition of a job. More details on the underlying components of AutoSys software
are contained in Section 4.6, CSCI Structure. More information about the AutoSys Operator
Console is contained in Section 4.7.2, Operator Interfaces.

4.1.4.2 AutoSys Integration into the Processing CSCI Design

For the Processing CSCI, AutoSys provides the job scheduling engine for the Processing CSCI.
AutoSys' Event Processor will manage all the events that occur in the science data production
environment. AutoSys' Database will become part of the PDPS Database using the AutoSys
provided table schema. For detailed design, the current assumption is that the AutoSys provided
processes will manage the processing environment when the production facility is operating in a
steady state manor. For start up and shutdown, some development code is needed to assist in
establishing communication connections, initializing the PDPS database, assuring the availability
of other entities, i.e., Data Server, and alerting operations and other applications about startup and
initialization problems. After the completion of startup and upon the completion of adding the daily
job schedule to AutoSys, AutoSys will begin managing and monitoring the execution of jobs.

To support the execution of jobs, AutoSys will require additional help in the following areas:

4-12 305-CD-027-002

a. Resource Management—Allocation of sufficient resources, i.e., disk storage, to support
execution. Currently, AutoSys provides no mechanisms for managing disk storage. This is
a potential enhancement that will be added to their product. Also, the monitoring of
resources will not be done by AutoSys. This is a MSS and Processing joint responsibility.

b. Data Management—Manages the staging, destaging, and retention of data on Processing
resources.

c. PGE Execution Management—Initiates and monitors execution of a PGE.

The following paragraphs briefly illustrates the operational concepts of the Processing CSCI
design. They discuss the following:

a. How a job schedule is created

b. How jobs are prepared and initiated, and

c. How post-processing takes place.

These applications will be initiated by AutoSys at the Job level. For each PGE, a series of
preparation, execution, and post-execution jobs will be defined. The preparation jobs will manage
the staging of data (if necessary) and allocation of resources to support execution. The execution
job will be used to initiate and monitor the execution of the PGE. The post-execution job will be
used to destage and deallocate resources.

To accomplish the set-up of these jobs, AutoSys' capabilities to create and manage job
dependencies and to create job boxes, which consist of a series of related jobs, will be used. For
each Data Processing Request, which contains the data required to support the execution of one
PGE, received from Planning, a corresponding job box, which contains a series of jobs to allocate
resources, stage data, execute the PGE, destage data, and deallocate resources, will be created. In
Figure 4.1-1, the diagram shows the steps involved in providing job information to AutoSys. The
Production Planning Workbench component of the Planning CSCI is the initiator of this activity.
The Production Planning Workbench component will use the Scheduler (DpPrScheduler) public
class which is being created to provide an interface to AutoSys. This class will encapsulate
AutoSys defined capabilities and will manage the information flow from Planning to AutoSys.
Through the use of API and command line interfaces, the Scheduler class will provide job
definitions to the AutoSys Database. Also, through the DpPrScheduler, the Planning CSCI will be
able to request the status for the jobs associated with a Data Processing Request.

4-13 305-CD-027-002

Figure 4.1-1. Scheduling Jobs Using AutoSys

Create Job Schedule

AutoSys

PDPS Database

AutoSys
Database

Production
Planning Workbench

DPR
Info,
Plan
Info

Job
Scheduler

AutoSys
Job Info

AutoSys
Job
Info

Job Box

Preparation Job Execution Job Post-Exec

4-14 305-CD-027-002

Each of these jobs will actually consist of a command which initiates a process or processes to
perform the task desired. The process will perform the desired functions and gracefully terminate.
The successful completion of their task will result in the next dependent job being released until
all jobs within the job box have completed. Besides managing normal operations through these
mechanisms, failures which occur within a job box could result in the execution of special fault
recovery jobs when necessary.

The Processing CSCI custom components will be initiated by AutoSys to perform support
activities, such as resource allocation, staging and destaging data, and interfacing with the PGE.
Figure 4.1-2 shows the series of steps and resulting actions performed by the Processing CSCI
components.

4-15 305-CD-027-002

 Figure 4.1-2. Initiating Processing Components Using AutoSys

PDPS Database

AutoSys

AutoSys
Job
Info

Job Box

Data Prep Job Execution Job Post-Exec

Initiate Data Preparation
Activities

Data Manager
 -- Prepare Input Data
 -- Allocate Resources

DataResource Data Server
Perform
Data
Staging
(OODCE)

Initiate Preparation Job

AutoSys
Database

PGE Prep Job
Job
Job
Job

Job

4-16 305-CD-027-002

AutoSys also provides logging and report generation in order to capture information on job results
and status changes. This information will provide information previously mapped to the Processing
Log (DpPrProcessingLog) as presented in the Preliminary Design Specification.

4.1.4.3 Platinum Technology's AutoXpert

This product provides mechanisms to monitor and manage the job schedule which currently is
being processed in AutoSys. This product is a GUI which provides different methods of viewing
the progress of the job schedule, determining corrective measures when required, and providing
capabilities to play what-if simulations to determine the affects of modifying the active job
schedule. AutoXpert allows the job schedule to be represented at many different levels of
abstraction. This concept is an important concept given the large numbers of jobs expected to
executed per day at a given DAAC site. These abstract views include a time-line, gantt chart, and
job data flows. As part of these views, jobs which are not following predicted behaviors will be
color coded which will allow the operations staff to intervene, if necessary. More information
about the AutoSys Operator Console and the AutoXpert GUI capabilities is contained in
Section 4.6.2, Operator Interfaces.

4.1.5 Database Interface

A group of PDPS database interface classes will provide an efficient mechanism for interfacing
with the database. This interface provides the following features:

• encapsulates most of the Rogue Wave DBtools.h++ classes so that application
developers do not have to be familiar with DBtools protocol in order to access the
database

• manages centralized database connections within an application so that objects do not
make unnecessary database connections

• allows developers to easily manipulate data without having to translate between class
attribute names and database table column names

4-17 305-CD-027-002

4.2 CSCI Context
The Processing CSCI interfaces with the following external actors, SDPS and CSMS subsystems
to fulfill its responsibilities:

a. Planning Subsystem—The Planning Subsystem is responsible for creating a production
plan for the Processing CSCI. The Production plan information is conveyed to the
Processing CSCI through the use of Data Processing Requests. Each Data Processing
Request represents one processing job to be performed by a Data Processing Subsystem
computer resource. Processing will provide status information to Planning to assist in
production management activities of the Planning CSCI.

b. Data Server Subsystem—To support the creation of ECS Data Products, the Processing
CSCI needs the capability of requesting and receiving data (Data Staging) from any of the
Data Server resources which has the responsibility of maintaining the data. Also, the
Processing CSCI needs the capability of transferring data (Data Destaging) to any Data
Server resource for archiving of a generated data product.

c. Operations Interface—To support the management and monitoring of the execution of a
PGE and the creation of ECS Data Products, a HMI interface is provided. This interface
will provide services to support the collection of status for a Data Processing Request, the
cancellation, suspension/resumption and/or modification of a Data Processing Request,
and monitoring of the health of Data Processing Subsystem hardware resources. Also, this
interface will be used to support manual quality assurance operations performed at the
DAAC.

d. SDP Toolkit Interface—To support PGE execution, the Processing CSCI provides
information on the location of input data and the location of where the generated output
data products are to be maintained. While a PGE is executing, the Processing CSCI
monitors the execution of the PGE and informs the operations staff of current status. Status
may include current processing event history (what is happening, i.e., data staging,
execution). Also, monitoring will be needed to make sure that the processing activity is
executing properly. Upon completion of the execution of a PGE, the Data Processing
CSCIwill inform Planning and will initiate the transfer of the generated data product (if
necessary) to the Data Server.

e. CSMS Interface(s)—The Processing CSCI relies on CSMS services to assist in
communications and resource management activities and provides system management
information to CSMS for Fault, Accounting, Configuration, Security, Performance, and
Accountability purposes. Also, CSMS will provide support for the monitoring of
Processing resources and the execution of Science Algorithms.

f. Ingest CSCI—To support science data production, the Processing CSCI must be capable of
acquiring necessary input data, the Ingest CSCI's hardware resources are the location of the
Level 0 data, and other additional products when first input into ECS.

4-18 305-CD-027-002

4.3 CSCI Object Model
The Processing CSCI Object Model is actually composed of a number of differing views of
components which compose the Processing CSCI. These components provide different abstract
views of the Processing CSCI design to assist in developing an understanding of the design. The
following object model views will be presented and the underlying objects will be described:

1. Processing CSCI top-level CSC view

2. COTS Manager

3. PGE Execution Manager

4. Data Manager

5. Resource Manager

6. Q/A Monitor

7. DAAC Non-Science QA

8. Data Pre-Processing

Besides the above listed Processing CSCI components, the Processing CSCI is dependent on the
PDPS Database for the management of Processing CSCI persistent data storage. More information
on the PDPS Database is contained in the PDPS Database CSC of the Planning Subsystem Design
Specification.

4.3.1 Processing CSCI Component View

This view of the Processing CSCI (Figure 4.3-1) represents the various components and the
associations of these components of the Processing CSCI.

AutoXpert provides additional capabilities to perform simulations using the current active job
schedule. These capabilities will assist the operations staff in judging the downstream effects of the
failure of a job, the unavailability of a resource, the late arrival of data, and a job running longer
than predicted. These capabilities are provided and can be used in real-time for projections, but also
in a simulation mode, where the schedule can be sped up or other job information can be changed
to judge what the impact would be. These additional capabilities will help assist DAAC operations
personnel in determining what impact production anomalies will have against the active plan and
may be used to determine if a replan of production is necessary.

In terms of the Release A PDPS Preliminary Design Specification, AutoXpert provides functions
which were previously mapped to the Production Management CSC in the Planning CSCI. Since
these functions are being provided by the AutoSys and AutoXpert products, it seemed desirable to
map the COTS product to one CSCI. This decision eliminated the need to represent interfaces
between AutoSys and AutoXpert across CSCI and Subsystem boundaries.

4-19 305-CD-027-002

Figure 4.3-1. Processing CSC Level Object Model

PlDPRB

DpPrJobManagement

DpPrDataManagement DpPrPgeExecutionManagement

DpPrResourceManagement DpPpPreProcessing

(Subsystem)

(Subsystem) (Subsystem)

(Subsystem) (Subsystem)

Manages
DPR Jobs

Initializes and
Ensures Availability of
Resources and Data

Requests Resource
Allocation and Execution

of PGEs

Allocates
Resources

Allocates
Resources

Performs Pre-Processing
on Staged Data as

a PGE

4-20 305-CD-027-002

4.3.2 COTS Manager View

The COTS Manager View (Figure 4.3-2) represents the classes used to manage the flow of
information to the COTS products. All ECS applications which need to pass information to the
COTS products, which include Planning CSCI components and other Processing CSCI
components, will interface to the COTS using these classes. This collection of classes provides the
interface to AutoSys, and will take information provided and translate to the COTS supplied API
and command line interfaces. Any application which requires an interface to AutoSys would be
required to use this interface. The following functions are provided through the COTS Manager:

1. Manages the start-up and shut-down of the AutoSys and AutoXpert products.

2. Provides the interface to AutoSys to add, modify, suspend, resume, and cancel jobs
(Planning CSCI interfaces).

3. Provides predictive staging scheme to achieve efficient resource utilization.

4. Provides additional management/monitoring mechanisms (if needed)

5. Provides the interface to allow the MSS CSCI to interact with AutoSys to alert AutoSys of
unavailable resources and external event information, and for AutoSys to provide
information to MSS (including, accounting, configuration, Report/log information, if
necessary).

4-21
305-C

D
-027-002 Figure 4.3-2. COTS Manager Object Model

DpPrScheduler

DpPrCotsManager

COTS

DpPrDataManagement

DpPrPgeExecutionManagement

PlPGEPlDPRB PlGroundEvent

PlPerformance DpPrJIL

myPipe
myCommand

DpPrJIL()
~DpPrJIL()
Init()
AddCommand(const command:EcTChar*)
Execute()
Cancel()

CreateGEvntJob(Event:PlGroundEvent)
CancelGEvntJob(Event:PlGroundEvent)
CreateDprJob(Dpr:PlDpr)
ReleaseDprJob(Dpr:PlDpr)
UpdateDprJob(Dpr:PlDpr)
GetDprJobStatus(Dpr:PlDpr)
SuspendDprJob(Dpr:PlDpr)
ResumeDprJob(Dpr:PlDpr)
CancelDprJob(Dpr:PlDpr)

DpPrDprStatusNB

PlDPRB

dprID
jobIdList
jobStatusList
currentDprStatus

DpPrDprStatus(dprID:RWCString)
UpdateJobStatus(jobId:DpTPrJobId, status:DpTPrJobStatus)
UpdateCurrentDprStatus(status:DpTPrJobStatus)
ReportCurrentDprStatus(void)

AddJobBox(PgeDeps:ListofPgeIds, Times:TimeInfo, Name:string)
AddJob(ToBox:DpPrJobId, Cmd:string, Parms:ListofParameters, Machine:string)
RemoveResource(Res:DpPrResource)
ModifyResource(OldRes:DpPrResource, NewRes:DpPrResource)
AddResource(ResInfo:DpPrResource)
GenerateReport(Command:String)
SendAlarm(Command:String)
GetJobInfo(Job:DpPrJobId, Cmd&:string, PgeDeps&:ListofPgeIds,
Parms&:ListofParameters,Times)
UpdatePriority(Job:DpPrJobId,Priority:DpPrJobPriority)
UpdateJobStatus(Job:DpPrJobId, Status:DpPrProcessingStatus)
GetJobStatus(Job:DpPrJobId)
CancelJob(Job:DpPrJobId)
ForceJob(Job:DpPrJobId)
StartJob(Job:DpPrJobId)
ReleaseJob(Job:DpPrJobId)
UpdateTimeInfo(Job:DpPrJobId,Times:TimeInfo)

[DISTR OBJ]

[Public]

Offpage

(Subsystem)

(Subsystem)

OffpageOffpage Offpage

Offpage

 - : FILE*
 - : EcTChar*

 +
 +
 + : DpTPrJILStatus
 + : DpTPrJILStatus
 + : DpTPrJILStatus
 + : EcTVoid

 +
 +
 +
 +
 +
 + : DpPrProcessingStatus
 + : Status
 + : Status
 +

[Boundary]

[PERSISTENT CLASS]

Offpage

 - : RWCString
 - : *DpTPrJobId
 - : *DpTPrJobStatus
 - : DpTPrJobStatus

 +
 + : DpTPrReturnType
 + : DpTPrReturnType
 + : DpTPrReturnType

 +
 +
 +
 +
 +
 +
 +
 +

 +
 +
 + : DpPrProcessingStatus
 +
 +
 +
 +
 +

Manages DPR Jobs

Ensures Availability
of Resources and Data

Initializes

Obtains Information
About Run Conditions

From

Interfaces Directly With

Manage Jobs

Manages Ground Events

Get Staging Time From

Sends JIL
Commands

to

Allocates Resources
and Executes PGEs

Interfaces
via JIL

with

Creates

updates

Reports Status

updates

4-22 305-CD-027-002

4.3.3 Data Management View

The Data Management View (Figure 4.3-3) represents the classes used to manage the flow of
science data to and from science processing resources. This includes the communication
mechanisms needed to interface with the Science Data Server CSCI and the Ingest CSCI. Also,
these classes provide additional functions to manage the retention of data on science processing
resources which is used to support many PGE executions.

4-23
305-C

D
-027-002

Figure 4.3-3. Data Management Object Model

DpPrDataManager PlDPRB PlDataGranule

myStopTime

DpPrDataMap

myStartTime
myESDTParmVals
myUR
myAvailability
myActualAvailability
myPredictedAvailability

RegisterAvailability()
FindAssociatedDprs()
GetAvailability()
GetUR()

DsClESDTReferenceCollector <RWVector>

DsClESDTReferenceCollector
SetStatusCallback

DsClRequest

DsClRequest
~DsClRequest
Insert
Submit

DsClCommand

SetCategory
SetServiceName

DpPrJobManagement

(Subsystem)

DpPrResourceManagement

(Subsystem)

Charged

GetDataTypeName()

myMachine
myURid
myStatus
myNumberOfUses
myLocation

GetURid()
SetNumberOfUses()
GetNumberOfUses()
SetLocation()
GetLocation()
Delete()
Update()
Insert()
SetStatus()
GetStatus()
SetURid()
DpPrDataMap()
~DpPrDataMap()
GetMachine()
SetMachine()
Select()

myRequest
myDataMap
myStagingData
my DPR

MakeDataLocal(DPRid:int, Machine:string)
DeallocateData(DPRid:int, Machine:string)
InitializeData(DPRid:int)
StageRequestReturn()
DestageRequestReturn()

DpPrUnusedData

PlPerformance

myUnusedData

GetUnusedData()
DpPrUnusedData()
~DpPrUnusedData()DpPrDprStatusNB

myCompletionState
myActualStart
myPredictedStart
myPriority
myDprid
myOutputDataInstanceList List
myInputDataInstanceList List

GetNextInputData()
GetCommandString()
GetOutputDataInstance()
CheckAvailability()
Cancel()
Release()
Modify()
Status()
Schedule()
~PlDPB()
PlDPB()
GetInputDataInstance()
PlDPR()
~PlDPR()

[Boundary]

Offpage [PERSISTENT CLASS]

 - : Time

[PERSISTENT CLASS]

 - : Time
 - : GlParameterList
 - : GlUR
 - : Boolean
 - : Time
 - : Time

 +
 +
 + : Boolean
 + [DISTR OBJ]

<RWVector>

Offpage

Offpage

Offpage

 - : RWCString = Null
 - : DpTPrDataStatus = DpEPrDSNone

 - : RWCString = Null

 + : RWCString

 + : RWCString
 + : EcUtStatus

 + : DpTPrDataStatus

 +
 +

 - : DsClRequest*
 - : DpPrDataMap
 - : List

 + : void
 + : void
 + : void
 + : void
 + : void

Offpage

 - : List

 + : List
 +
 +

[Boundary]

Offpage[PERSISTENT CLASS]

 - : RWCString

 - : EcTInt

 + : Boolean
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid

 + : PlDPR
 +

locates

InitializesandEsuresAvailability
ofResourcesandData

Allocates/
Deallocates
Resources

SubmitsRequestThrough

specifies
manages

builds

removes

contains

Update
Predicted

Staging Time

updates

4-24 305-CD-027-002

4.3.4 PGE Execution Management View

The PGE Execution Manager View (Figure 4.3-4) represents the classes used to support the
execution of a PGE. While the COTS product will actually initiate the execution of the PGE, the
supporting preparation activities, such as creating the Process Control File, are provided through
these classes.

4-25
305-C

D
-027-002

Figure 4.3-4. Execution Management Object Model

DpPrExecutionManager

DpPrPge

DpPrExecutable

DpPrPcf

DpPrResourceManagement

MsMgCallBacks MsManager

PlDPRB PlDataGranule

DsClRequest

DsClESDTRefenceCollector

DsClCommand

myClientMachine

DpPrExecutionManager(Host:String)
~DpPrExecutionManager()
GetHostName()
GenProcessMetadata(Machine:String,Pge:DpPrPgeId,Job:DpPrJobId)
AllocateResources(Machine:String,Pge:DpPrPgeId,Job:DpPrJobId)
DeallocateResources(Job:DpPrJobId)
DeallocateResources(Machine:String,Pge:DpPrPgeId,Extent:enum
reclaim_type={FULL,PARTIAL}=PARTIAL)

myName
myLocation
myPermission

DpPrPcf(Name:String,Location:String,Access:int=600)
GetName()
GetLocation()
GetPermission()
SetNewLocation(NewLocation:String)
~DpPrPcf()

myTarget
myLevel
myLocation
myName
myPermission
myShell

DpPrExecutable(Name:String,Target:String,Location:String,Level:layer_type,
Access:int=500,Shell:String="csh")
~DpPrExecutable()
SetNewLocation(NewLocation:String)
GetLevel()
GetLocation()
GetName()
GetPermission()
GetShell()
GetStatus(State:enum state_type)
GetTarget()

myShell
myState
myCommands
myEnvironment
myPgeID
myHost
myExecSet

~DpPrPge()
Stage(ElementType:enum component_type={EXEC,SMF,PCF},BasePath:String)
Destage(ElementType:enum component_type={EXEC,SMF,PCF}=PCF)
Suspend()
Resume()
Abort()
DpPrPge(Pge:DpPrPgeId,Host:String,State:state_type=STANDBY,ComSet:String="1110
50")
GetStatus()
Execute(Commands:String"1110
50",Environment:String,Shell:String="PGS_PC_Shell.sh")
GetID()
GetHost()
GetEnv()
GetCom()
GetShell()
CheckStatus()

DpPrDprStatusNB

DpPrResourceUsageNB

MsBaCotsIFB

userTime
systemTime
inputBlock
outputBlock
jobId
totalInputFileSize
totalOutputFileSize

SetTimeAndIOUsage(command:char*)
SetDiskUsage(pcf:DpPrPcf)
ReportResoureUsage(to:MsBaCotsIFB)

[Boundary]

[PERSISTENT CLASS]

[Boundary]

[PERSISTENT CLASS]

[PERSISTENT CLASS]

(Subsystem)

Offpage Offpage

Offpage Offpage[PERSISTENT CLASS]

Offpage

Offpage

Offpage

 - : RWCString

 +
 + : RWCString

 - : RWCString
 - : RWCString
 - : RWCString = "600"

 + : RWCString
 + : RWCString
 + : RWCString

 +

 - : RWCString
 - : DpTPrLayerType
 - : RWCString
 - : RWCString
 - : RWCString = "500"
 - : RWCString = "csh"

 +

 + : DpTPrLayerType
 + : RWCString
 + : RWCString
 + : RWCString
 + : RWCString
 +
 + : RWCString

 - : RWCString = "PGS_PC_Shell.sh"
 - : DpTPrPgeStateType = DpEPrPgeSTANDBY
 - : RWCString = "1110 50"
 - : RWCString
 - : RWCString
 - : RWCString
 - : RWTValSlist<DpPrExecutable>

 +
 +

 + : EcUtStatus
 + : EcUtStatus
 + : EcUtStatus

 + : EcUtStatus

 + : RWCString
 + : RWCString
 + : RWCString
 + : RWCString
 + : RWCString
 +

[Boundary]

Offpage[PERSISTENT CLASS]

[Boundary]

Offpage

 - : int
 - : int
 - : int
 - : int
 - : DpTPrJobId
 - : int
 - : int

 + : DpTPrReturnType
 + : DpTPrReturnType
 + : DpTPrReturnType

operates on

activates
1+

Activates
Agent

Through

Locates Specifies

Constructs Builds

Allocates/
Deallocates
Resources

Submits
Request
Through

updates

Gets File Paths

Reports Usage to

activates

maps to
3

4-26 305-CD-027-002

4.3.5 Resource Management View

The Resource Management View (Figure 4.3-5) represents the classes used to support the
management of science processing resources. These classes provide mappings of logical to the
physical resources to allow the Processing CSCI to manage and monitor science processing
resources being used to support science data production. This process provides additional resource
management and monitoring capabilities that are not currently provided by AutoSys. At this time,
it is thought that the interface to Resource Management is through AutoSys, i.e., AutoSys will
signal or initiate Resource Management when required. These additional functions will help
determine whether all required resources are available to support the execution of the PGE. Please
note, that this is one area where Platinum Technology has agreed to strengthen AutoSys'
capabilities using PDPS input to determine these additional capabilities.

4-27
305-C

D
-027-002

Figure 4.3-5. Resource Management Object Model

DpPrComputer

DpPrString

DpPrDiskPartition

DpPrResource

DpPrResourceConfiguration
DpPrResourceManager

DpPrDiskAllocation

myComputerSet

~DpPrString()
DpPrString(Name:String,Id:DpPrId,State:state_type=ONLINE)

DpPrResourceConfiguration()
~DpPrResourceConfiguration()
GetResource()
SetResource()
ModifyResource()

myPath
myLastSize
mySize
myUser
myType
myID

~DpPrDiskAllocation()
GetID()
GetPath()
GetFixedSize()
GetLastSize()
GetType()
CheckFile()
DpPrDiskAllocation(Sequence:DpPrId,Type:occupation_type,Path:String,Id:DpPrJobI
d,Size:unsigned)

myPartitionSize
myBlockSize
myAllocationList
mySysAllocation
myUserAllocation

DpPrDiskPartition(Device:DpPrId,Root:String,State:enum
state_type={OFFLINE,ONLINE})
~DpPrDiskPartition()
UpdateDiskStatus()
GetPartitionSize()pho
GetBlockSize()
GetUsage(Entity:enum occupation_type={SYSTEM,USER})
RelAllocation(Size:unsigned &,Id:DpPrJobId,FilePath:String)
GetStatus()
GetFree()
CheckAllocation(Margin:Leeway,Id,DpPrJobId,FilePath:String)
SetSysAllocation()
SetAllocation(Size:unsigned,Id:DpPrJobId,FilePath:String)

myID
myName
myState

GetName()
GetID()

MsDAAC

PlResourceUI

MsManager

MsMgCallBacks

MsMgCallBacksMsManager

DeallocateResource(Machine:String,Paths:DpPrPathPtr &,Job:DpPrJobId)
DeallocateResource(Machine:String,Power:int,Job:DpPrJobId)
DeallocateResource(Machine:String,Job:DpPrJobId)
AllocateResource(Machine:String,Data:DpPrDataPtr &,Paths:DpPrPathPtr
&,Job:DpPrJobId)
AllocateResource(Machine:String,Paths:DpPrPathPtr &,Job:DpPrJobId)
AllocateResource(Machine:String,Power:int,Job:DpPrJobId)
GetAvailableResource(Machine:String,Data:DpPrDataPtr &,Paths:DpPrPathPtr &)
QueryResourceUsage(Machine:String,Usage:ResUse &)
QueryResourceUsage(Job:DpPrJobId,Usage:ResUse &)
QueryBadResources(Machine:String,Paths:DpPrPathPtr &)
QueryResourceStatus(Machine:String,Condition:ResStatus &)
ReportResource(Resource:ResElement &)
GetResource(Resource:ResElement &,ResourceSet:ResContainer &,Element:int)
GetResourceList(ResourceSet:ResContainer &,Type:enum)
UpdateResourceStatus()
DpPrResourceManager()
~DpPrResourceManager()

myOperatingSystem
myPerProcessRam
myTotalRam
myTotalCpu
myMaxDiskSpace
myPerProcessCpu
myCpuAllocation
myDiskSet

~DpPrComputer()
UpdateMachineStatus()
GetRamLimit()
GetCpuLimit()
GetStatus()
GetDevices(range: DpTPrDiskConnect = DpEPrLOCAL)
SetAllocation(count:EcTInt,job:DpPrJobId)
GetOS()
GetProcessCpu()
GetDiskSpace(View:DpTPrQueryDisk)
GetAllocation()
GetProcessRam()
SetProcessRam(NewLimit:EcTUInt)
SetProcessCpu(NewLimit:EcTUInt)
DpPrComputer(Name:String,Id:DpPrId,Memory:unsigned,Processing:int,
Storage:connection_type={L OCAL,MOUNT,REMOTE}=LOCAL)
RelAllocation(Id:DpTPrJobId)

[Boundary]

[PERSISTENT CLASS]

[PERSISTENT CLASS]

[PERSISTENT CLASS]

[PERSISTENT CLASS]

[Boundary]

[PERSISTENT CLASS]

Offpage

Offpage

Offpage

Offpage

OffpageOffpage

operates on

consumed by

Activates
Agent

Through

Filters

Builds
Configuration

Activates
Agent

Through

4-28 305-CD-027-002

4.3.6 Quality Assurance Monitor View

The Quality Assurance View (Figure 4.3-6) represents the classes used to support the DAAC
operations position used to perform DAAC manual quality assurance activities. These activities
include visualization of science data products and updating quality assurance metadata.

4-29 305-CD-027-002

Figure 4.3-6. QA Monitor Object Model

DpPrQaMonitor

PlDataTypes

PlDataType

PlDataGranule

DsClESDTReference

GlUR

IoAdServiceCollection_C IoAdServiceAdvertisement

DsClSubscription

EOSVIEW

myMonitorCommandWindow
myDataTypeSelectionWindow
myMetaDataEditorWindow
myDataGranule

DisplayDataTypes()
SelectDataType()
SubmitSubscription(For:Advertisement)
WithdrawSubscription(For:Advertisement)
UpdateMetaData(For:Advertisement)
VisualizeData(Data:GlUR)
GetData(Data:GlUR)

GlParameterList

GlParameter
DsClCommand

DsClRequest

DsClESDTReferenceCollector<RWVector>

IoAdAdvertisingSrv_C

Offpage

Offpage

Offpage

[PERSISTENT CLASS]

Offpage

[Public]

Offpage

Offpage Offpage

Offpage

Offpage

 -
 -
 -
 - : PlDataGranule

 +
 +
 +
 +
 +
 +
 + : PlDataGranule

Offpage

Offpage
Offpage

Offpage

[DISTR OBJ]
Offpage

<RWVector>

Offpage

Selects From
Searches

Visualize Data
through

Is Created By

Is Created By
Creates

Creates

Creates
Gets Data

Using

Selects
Creates

4-30 305-CD-027-002

4.3.7 DAAC Non-Science Quality Assurance View

The DAAC Non-Science Quality Assurance View (Figure 4.3-7) represents the classes used to
support the automated quality assurance processing which collects and reports information about
the production process.

4-31
305-C

D
-027-002

Figure 4.3-7. Metadata QA Object Model

DpPrExecutionManager

PlPGE PlDataGranule

DpPrNonScienceQANB

DpPrMetadataB

PlDPRB

DpPrDataManager

PlDataTypeB

DpPrDatabaseValNB

DpPrPcf

DpPrPge

myFileLocation
myNSQAstatus
myPGEid
myOutputCounter
myPCFName
myPCFLocation
myQAResults

~DpPrNonScienceQA()
DpPrNonScienceQA()
locateData()
saveCheckNumResults(myQAResults:RWCString, myFileLocation:RWFile*)
checkNumOfOutputs()

myParmMin
myParmMax
myParmKeyword
myretcode
myPDPSParmType
myPDPSParmName

DpPrDatabaseVal()
~DpPrDatabaseVal()
getPDPSParmVal(myPDPSParmName,myPDPSParmType)

myParmName
myParmValue
myParmType
myParameterList
myFileSize
myFileType
myParmCharVal

~DpPrMetadata()
DpPrMetadata()
checkFileSize()
saveCheckParmResults(myResults:RWCString)
checkParmValue(myparmValue:EcTInt, myParmCharVal:RWCString,
myParmType:RWCString, myFileSize:Ec TLongInt)

Offpage

Offpage Offpage[PERSISTENT CLASS]

[Boundary]

Offpage

Offpage

[Boundary]

Offpage

[Public]

Offpage[PERSISTENT CLASS]

[PERSISTENT CLASS]

Offpage[PERSISTENT CLASS]

[Boundary]

Offpage[PERSISTENT CLASS]

 - : RWFile*
 - : EcTInt
 - : EcTInt
 - : EcTInt
 - : RWCString
 - : RWCString
 - : RWCString

 +
 +
 + : RWFile*
 + : void
 +

 - : EcTInt
 - : EcTInt
 - : RWCString
 - : EcTInt
 - : RWCString
 - : RWCString

 - : RWCString
 - : EcTInt
 - : RWCString
 - : GlParameterList
 - : EcTLongInt
 - : RWCString
 - : RWCString

 +
 +
 +
 +

has

locates

specifies

specifies NSQA Check

initiates

searches for

matches

files located by

describes

1+

identifies

operates on

maps to

3

4-32 305-CD-027-002

4.3.8 Data Pre-Processing View

The Data Preprocessing View represents the classes used to support the preprocessing of ancillary
data which can then be used as inputs to a PGE. Data Preprocessing can be defined as preliminary
processing or application of operations on a data set which do not alter or modify its scientific
content. Preprocessing includes changes to the format of a data set by reordering the lower level
byte structure, reorganization of a data set (ordering data items within and between physical files),
preparing additional metadata based on lower level metadata, etc.

Figure 4.3-8, TRMM Data Preprocessing View, represents the overall view of classes for TRMM/
SDPF/FDF data preprocessing. Figure 4.3-9, EDOS Data Preprocessing View, represents an
overall view of classes for EDOS data preprocessing. For more detailed views, see the TRMM
Onboard Attitude Object Model (Figure 4.3-10), the TRMM Definitive Orbit Object Model
(Figure 4.3-11), and the AM-1 Onboard Orbit and Attitude Object Model (Figure 4.3-12).

4-33
305-C

D
-027-002

Figure 4.3-8. TRMM Data PreProcessing View

DpPpLevelZeroData

DpPpSdpfLevelZeroProductionData

DpPpSdpfLevelZeroDatasetFile

DpPpPreprocessingData

DpPpSdpfLevelZeroSfduFile

DpPpEphemerisData

DpPpTrmmScOaData

DpPpFdfData

DpPpTrmmOnBoardAttitudeData

DpPpTrmmScAncillaryData

myBeginningDateTime
myDataType
myDescriptor
myDiscipline
myEndingDateTime
myFieldId
myFileId
myFileSize
myGenerationDate
myMission
myMissionParameters
myProductInstance
myProductName
myProject
myRecordSize
mySequenceNumber

myDataId
myEndDate
mySatelliteId
mySecondsOfDayForEphemerisEnd
mySecondsOfDayForEphemerisStart
mySpaceCraftDataModeIndicator
mySpaceCraftInfo
myStartDate
myTapeId
myTimeSystemIndicator

Reformat()

mySpaceCraftInfo

PrepareAdditionalMetadata()

mySpaceCraftInfo

PrepareAdditionalMetadata()

myBeginningDateTime
myDataType
myDataVersion
myDescriptor
myDiscipline
myDpcio
myEndObjectDpcio
myEndObjectFileGroup
myEndObjectFileSpec
myEndingDateTime
myFileId
myFileIdDpcio
myFileSize
myGenerationDate
myMission
myMissionParameters
myObjectFileGroup
myObjectFileSpec
myProductInstance
myProductName
myProject
myRecordSize
mySdpfSystem
mySequenceNumber
myTotalFileCount

myBeginningDateTime
myDataType
myDescriptor
myDiscipline
myEndingDateTime
myFieldId
myFileId
myFileSize
myGenerationDate
myMission
myMissionParameters
myProductInstance
myProductName
myProject
myRecordSize
mySequenceNumber

myProductId
myProject
mySourceId

ExtractAdditionalMetadata()

DpPpFdfTrmmDefinitiveOrbitData

myDataId
myEndDate
mySatelliteId
mySecondsOfDayForEphemerisEnd
mySecondsOfDayForEphemerisStart
mySpaceCraftDataModeIndicator
mySpaceCraftInfo
myStartDate
myTapeId
myTimeSystemIndicator

ExtractAdditionalMetadata()
PrepareAdditionalMetadata()
Reformat()

myBeginningDateTime
myDataType
myDescriptor
myDiscipline
myEndingDateTime
myFieldId
myFileId
myFileSize
myGenerationDate
myInstrumentName
myMission
myMissionParameters
myProductInstance
myProductName
myProject
myRecordSize
mySequenceNumber
mySpaceCraftInfo

ExtractAdditionalMetadata()
PrepareAdditionalMetadata()
QaCheck()

myBeginningDateTime
myDataType
myDataVersion
myDescriptor
myDiscipline
myEndObjectFileGroup
myEndObjectFileSpec
myEndingDateTime
myFileId
myGenerationDate
myMission
myMissionParameters
myObjectFileGroup
myObjectFileSpec
myProductInstance
myProductName
myProject
myRecordSize
mySdpfSystem
mySequenceNumber
myTotalFileCount

ExtractAdditionalMetadata()
PrepareAdditionalMetadata()

myBeginningDateTime
myDataType
myDataVersion
myDescriptor
myDiscipline
myDpcio
myEndObjectDpcio
myEndObjectFileGroup
myEndObjectFileSpec
myEndingDateTime
myFileId
myFileIdDpcio
myFileSize
myGenerationDate
myMission
myMissionParameters
myObjectFileGroup
myObjectFileSpec
myProductInstance
myProductName
myProject
myRecordSize
mySdpfSystem
mySequenceNumber
myTotalFileCount

ExtractAdditionalMetadata()
PrepareAdditionalMetadata()

 - : double
 - : char
 - : char
 - : char
 - : double
 - : char
 - : char
 - : int
 - : double
 - : char
 - : structure
 - : char
 - : char
 - : char
 - : int
 - : int

 - : char
 - : double
 - : char
 - : double
 - : double
 - : char
 - : structure
 - : double
 - : char
 - : char

 -

 - : structure

 -

 - : structure

 -

 - : double
 - : char
 - : char
 - : char
 - : char
 - : char
 - : char
 - : char
 - : char
 - : double
 - : char
 - : char
 - : int
 - : double
 - : char
 - : structure
 - : char
 - : char
 - : int
 - : char
 - : char
 - : int
 - : char
 - : int
 - : int

 - : double
 - : char
 - : char
 - : char
 - : double
 - : char
 - : char
 - : int
 - : double
 - : char
 - : strucuture
 - : char
 - : char
 - : char
 - : int
 - : int

 - : char
 - : char
 - : char

 -

 - : char array
 - : double
 - : char array
 - : double
 - : double
 - : structure
 - : structure
 - : double
 - : char array
 - : char array

 -
 -
 -

 - : double
 - : char
 - : char
 - : char
 - : double
 - : char
 - : char
 - : int
 - : double
 - : char
 - : char
 - : structure
 - : char
 - : char
 - : char
 - : int
 - : int
 - : structure

 -
 -
 -

 - : double
 - : char
 - : char
 - : char
 - : char
 - : char
 - : char
 - : double
 - : int
 - : double
 - : char
 - : structure
 - : char
 - : char
 - : int
 - : char
 - : char
 - : int
 - : char
 - : int
 - : int

 -
 -

 - : double
 - : char
 - : char
 - : char
 - : char
 - : char
 - : char
 - : char
 - : char
 - : double
 - : char
 - : char
 - : int
 - : double
 - : char
 - : structure
 - : char
 - : char
 - : int
 - : char
 - : char
 - : int
 - : char
 - : int
 - : int

 -
 -

1+

1+

CorrespondsTo
1+

4-34
305-C

D
-027-002

Figure 4.3-9. EDOS Data PreProcessing View

DpPpAm1ScOaDataNB

DpPpEdosPDSConstructionRecordNB

DpPpEdosLevelZeroPDSNB

DpPpAm1AncPacketProcessorNB

myConstructionRecordFile
myConstructionRecordData

DpPpEdosPDSConstructionRecordNB(EcTChar* PDSName)
~DpPpEdosPDSConstructionRecordNB()
DpPpGetPDSApId()
DpPpWriteNativeConstructionRecord(RWFile* newPDS)

myAncillaryPDSName
myPDSEndTime
myPDSStartTime

DpPpAm1ScOaDataNB(EcTChar* PDSName)
~DpPpAm1ScOaDataNB()

DpPpReportOrbitDataQuality(EcTInt numberOfGaps,EcTInt maxGap,EcTInt averageGap,
EcTInt numOfSpikes)

DpPpNotify()
DpPpConstructAncillaryDataSets()

myPDSName
myPDSSizeInBytes
myAPID
myNewPDSFiles
myNumberOfFilesInPDS
myLevelZeroFiles

DpPpEdosLevelZeroPDSNB(EcTChar* thePDSName)
~DpPpEdosLevelZeroPDSNB()
DpPpRepackagePDS()
DpPpProcessDataSet()

Offpage

 - : RWFile*
 - : EcTChar*

 +
 +
 + : EcTInt
 + : EcTBoolean

 - : RWCString = "\0"
 - : EcTReal
 - : EcTReal

 +
 +

 - : EcTVoid

 - : EcTBoolean
 + : EcTBoolean

 - : RWCString* = "\0"
 - : EcTLongInt
 - : EcTInt
 - : RWFile*
 - : EcTInt
 - : RWFile*

 +
 +
 - : EcTBoolean
 + : EcTBoolean

4-35 305-CD-027-002

Figure 4.3-10. TRMM OnBoard Attitude Object Model

DpPpTrmmOnBoardAttitudeData

myDescriptor

mySequenceNumber

myBeginningDateTime

myGenerationDate

myEndingDateTime

myInstrumentName

myRecordSize

myProductInstance

mySpaceCraftInfo

myFieldId

myDataType

myDiscipline

myProject

myFileId

myMission
myMissionParameters

myFileSize

myProductName

ExtractAdditionalMetadata()
PrepareAdditionalMetadata()
QaCheck()

DpPpAttitudeProcessingSet

currentPacket:DpPpAttitudePacket*
attitudePackets:DpDpAtttiudePackets*
qacLists:List<DpPpQacList>*

advanceBoxcarWindow()
writeCurrentPacket()
checkForGap()
checkForSpike()
checkQacFlag()

DpPpAttitudeProcessingSet(fileNames:List<string>,
 startTime:double,
 endTime:double,
 qaParams:DpPpQaParameters,
 qacList:List<DpPpQacList*>)

DpPpQacList

qacTable:array[int,char]

DpPpQacList(fileIds:List<int>)
getQacFlag(recordNumber:int):char

DpPpAttitudePackets

previousPacket:DpDpAttitudePacket*
currentPacket:DpPpAttitudePacket*
lastPacket:DpPpAttitudePacket*
firstPacket:DpPpAttitudePacket*

refreshPackets()
computeGaps():double
getAverageAttitude():List<double>
getRecordNumber():int
addPacket(attitudePackets:DpPpAttitudePacket*)

DpPpAttitudePackets(boxcarWindowSize:int,
fileIds:List<int>)

DpPpQaParameters

boxcarWindowSize:int
gapThreshold:double
spikeThreshold:float

DpPpTrmmOnBoardAttitudeData(fileNames:List<string>,
 timeRanges:List<double>,
 qaParams:DpPpQaParameters)

qaParams:DpPpQaParameters

DpPpAttitudePacket

time
qaFlag
attitude
orientationMode
recordNumber

setSpikeFlag(spikeFlag:int)
writeToHdfFile(fileId:int)
writeToNativeFile(fileId:int)
setGapFlag(gapFlag:int)
getTime()
DpPpAttitudePacket(fileId:int)
getAttitude()
setQaFlag(qacFlag:int)

 - : char

 - : int

 - : double

 - : double

 - : double

 - : char

 - : int

 - : char

 - : structure

 - : char

 - : char

 - : char

 - : char

 - : char

 - : char
 - : structure

 - : int

 - : char

 -
 -
 -

 - : structure
 - : structure
 - : int array

 -
 -
 -
 -
 -

 - : int array

 -
 -

 - : structure
 - : structure
 - : structure
 - : structure

 -
 -
 -
 -
 -

 -

 - : int
 - : double
 - : float

 -

 - : structure

 - : double
 - : int
 - : double array
 - : char
 - : int

 -
 -
 -
 -
 -
 -
 -
 -

n=boxcarWindowSize

4-36 305-CD-027-002

Figure 4.3-11. TRMM Definitive Orbit Object

DpPrFdfProcessingSet

DpPrEphemRecord

DpPrEphemerisRecord

DpPrFdfTrmmDefinitiveOrbitData

DpPrFdfTrmmDefintiveOrbitData(int *fileNames,
 int *timeRanges, char *qaFile,
 char *missionFile)

Reformat()
PrepareAdditionalMetadata()
ExtractAdditionalMetatdata()

myTimeSystemIndicator
myTapeId

myDataId
myEndDate

myStartDate
mySpaceCraftInfo
mySpaceCraftDataModeIndicator
mySecondsOfDayForEphemerisStart
mySecondsOfDayForEphemerisEnd
mySatelliteId

DpPrEphemerisMetadata

fdfId

currentMetId

previousHdfId

DpPrFdfProcessingSet()

ephemerisRecords

DpPrEphemerisRecord()

DpPrParseEphemRecord(DpTPrEphemRecord &ephemRecord,
DpTPrEphemerisRecord *ephemerisRecords)

ephemRecord

DpPrEphemRecord()

orbitNumber

orbitAscend

currentHdfId

DpPrWriteHdfEphemerisMetadata()

DpPrWriteNativeEphemerisMetadata()

DpPrComputeEphemerisMetadata(const EcTReal &start, const EcTReal &end,
EcTReal crossPos[3][2][DpCPrMaxNodes],
EcTReal crossTime[2][DpCPrMaxNodes],
const EcTInt &nodeCount)

DpPrEphemerisMetadata()

DpPrGetEphemRecord(DpTPrEphemRecord &ephemRecord)

DpPrProcessingDatasets(EcTInt argc,EcTChar *argv[])

DpPrEphemerisTimeTai(EcTReal date,EcTReal days,EcTReal secDay,EcTReal &tai)

DpPrSetNativeId(RWFile* id,EcTInt whichDataset)

DpPrWriteEphemerisHeader(DpTPrEphemHeader1 ephemHeader1,
EcTInt orbitCount)
DpPrWriteEphemerisRecords(DpTPrEphemerisRecords *ephemerisRecords)

currentNativeId

DpPrGetEphemHeaders(DpTPrEphemHeader1 &ephemHeader1)
DpPrSetFdfId(RWFile* id)

DpPrFdfEof()

fdfId

ephemHeader1

goodEphemerisCount

totalEphemerisCount
startTime

endTime

orbitCount

DpPrArchiveEphemerisData()
DpPrWriteEphemerisMetadataMet()

DpPrGetMetadataParams(EcTReal &start,EcTReal &end,
EcTReal pos[3][2][DpCPrMaxNodes],
EcTReal time[2][DpCPrMaxNodes],EcTInt &count)

DpPrGetEndSentinel()

DpPrGetFdfId()
DpPrGetHdfId(EcTInt whichDataset)
DpPrGetNativeId(EcTInt whichDataset)
DpPrGetMetId(EcTInt whichDataset)

DpPrSetHdfId(EcTInt id)

currentHdfId

DpPrSetHdfId(EcTInt id,EcTInt whichDataset)
DpPrSetMetId(EcTInt id,EcTInt whichDataset)

orbitLongitude

DpPrGetEphemerisStatus()

whichDataset

currentHdfId

previousNativeId

currentNativeId

DpPrGetServer()

previousMetId

dataServer
ephemerisStatus

ephemerisStatus

crossPos

sentinelFlag

nodeCount

previousNativeId

crossTime

previousHdfId

vDataId

DpPrSetEphemerisStatus(EcTInt ephStat)

DpPrFindNodeCrossings(DpTPrEphemerisRecord *ephemerisRecords,EcTInt nEph)
DpPrReadNativeEphemeris(DpTPrEphemerisRecords &lastEphemeris)

DpPrInitializeVdata(const EcTInt vDataType)

DpPrDetachVdata()

ephemRecord

lastEphemeris

orbitCount

DpPrSetEphemerisStatus(EcTInt ephStat)

DpPrSetNativeId(RWFile *id,EcTInt whichDataset)

DpPrReadNativeEphemeris(DpTPrEphemerisMetadata &lastOrbit)

DpPrUpdateNativeEphemerisMetadata(DpTPrEphemerisMetadata &lastOrbit)

DpPrGetOrbitCount()
DpPrUpdateHdfEphemerisMetadata(DpTPrEphemerisMetadata &lastOrbit)

DpPrSetServer(EcTChar *server)

previousHdfId

currentNativeId

previousNativeId

currentMetId

previousMetId

ephemerisStatus
dataServer

orbitDescend

orbitStatus

lastOrbit
nodeCount

whichDataset

whichDataset

DpPrSetFdfId(RWFile *id)

 +

 +
 +
 +

 -
 -

 -
 -

 -
 -
 -
 -
 -
 -

 + : RWFile*

 + : RWFile*

 + : EcTInt

 +

 + : DpTPrEphemerisRecords*

 +

 + : EcUtStatus

 + : DpTPrEphemRecord&

 +

 - : EcTInt

 - : EcTReal*

 + : EcTInt

 + : EcUtStatus

 + : EcUtStatus

 +

 + : EcUtStatus

 + : EcUtStatus

 + : EcUtStatus

 + : EcTVoid

 + : EcUtStatus

 + : EcUtStatus

 - : RWFile*

 + : EcUtStatus
 + : EcTVoid

 + : RWBoolean

 - : RWFile*

 + : DpTPrEphemHeader1&

 - : EcTInt

 - : EcTInt
 + : EcTReal

 + : EcTReal

 - : EcTInt

 + : EcUtStatus
 + : EcUtStatus

 + : EcTReal

 + : RWFile*
 + : EcTInt
 + : RWFile*
 + : RWFile*

 + : EcTVoid

 - : EcTInt

 + : EcTVoid
 + : EcTVoid

 - : EcTReal*

 + : EcTInt

 - : EcTInt

 + : EcTInt

 + : RWFile*

 + : RWFile*

 + : EcTChar*

 + : RWFile*

 + : EcTChar*
 + : EcTInt

 + : EcTInt

 + : EcTReal

 + : EcTReal

 + : EcTInt

 - : RWFile*

 + : EcTReal

 - : EcTInt

 - : EcTInt

 + : EcTVoid

 + : EcUtStatus
 + : EcUtStatus

 + : EcUtStatus

 + : EcTVoid

 + : DpTPrEphemRecord&

 + : DpTPrEphemerisRecord&

 - : EcTInt

 + : EcTVoid

 + : EcTVoid

 + : EcUtStatus

 + : EcUtStatus

 + : EcTInt
 + : EcUtStatus

 + : EcTVoid

 + : EcTInt

 + : RWFile*

 + : RWFile*

 + : RWFile*

 + : RWFile*

 + : EcTInt
 - : EcTChar*

 - : EcTReal*

 + : EcTInt

 - : DpTPrEphemerisMetadata&
 - : EcTInt&

 - : EcTInt

 - : EcTInt

 + : EcTVoid

4-37
305-C

D
-027-002

Figure 4.3-12. AM-1 OnBoard Orbit and Attitude Object Model

DpPpAm1AncillaryPacketNB
DpPpCcsdsPacketNB

DpPpPacketVectorNB<Type:class>

DpPpAm1AncPacketProcessorNB

DpPpPacketQueueNB<DpPpAm1AncillaryPacketNB>

The parameter to DpPpPacketVectorNB
should be a subclass of DpPpCcsdsPacketNB.

DpPpEphemerisDataSetNB

DpPpAttitudeDataSetNB

DpPpAm1ScOaDataNB DpPpAm1AncQaParametersNB

myPacketStartTime
myPacketEndTime
myOrbitNumberStart
myOrbitNumberEnd
myCurrentOrbitData
myCurrentPacket
myPacketGapHistory
myPacketOrbitQaHistory
myPacketAttitudeQaHistory

DpPpCheckAttitudeDataForSpike()
DpPpCheckOrbitDataForSpike()
DpPpCheckForGap()
~DpPpAm1AncPacketProcessorNB()
DpPpProcessPackets()
DpPpLeastSquaresFit(EcTReal x[],EcTReal y[],EcTInt numPoints,EcTReal
*coeff0,EcTReal *coeff1,EcTReal *coeff2)
DpPpCalculateOrbitMetadata()
DpPpAm1AncPacketProcessorNB()

myPacketData
myAPID
myTime
mySequenceFlags
myPacketSequenceCount
myPacketLength

DpPpGetTime()
DpPpCcsdsPacketNB(EcTInt bufferSize)
~DpPpCcsdsPacketNB()
DpPpGetPacketSeqCount()
DpPpGetSequenceFlags()
DpPpGetAPID()
DpPpGetPacketLength()
DpPpReadPacketData(PGSt_IO_L0_VirtualDataSet file)

myAngle
myAngleRate
myLunarPosition
myPosition
mySolarPosition
myVelocity
mySolarArrayCurrent
myMagCoilCurrent
myTimeConversion

~DpPpAm1AncillaryPacketNB()
DpPpReadPacketData(PGS_IO_L0_VirtualDataSet file)
DpPpGetTimeConversion()
DpPpGetSolarArrayCurrent()
DpPpAm1AncillaryPacketNB()
DpPpGetFlagByte()
DpPpGetPosition()
DpPpGetVelocity()
DpPpGetAngle()
DpPpGetAngleRate()
DpPpGetSolarPosition()
DpPpGetLunarPosition()
DpPpGetMagntcCoilCurrent()

myHdfFileId
myNativeFile
myMetaDataFile
myEphemerisHeader
myFirstOrbitNumber
myLastOrbitNumber
myMetaDataList
myEphemerisQuality
myStartTime
myEndTime

DpPpEphemerisDataSetNB()
~DpPpEphemerisDataSetNB()
DpPpAddMetadataRecord(DpTEphemerisMetadata *metadataRecord)
DpPpAddRecord(DpTEphemerisRecord *record)
DpPpSetOrbitNumberRange(EcTLongInt first, EcTLongInt last)
DpPpSetStartTime(EcTReal time)
DpPpSetEndTime(EcTReal time)

myAttitudeHeader
myEndTime
myStartTime
myAttitudeQuality
myNativeFileId
myMetaDataFile
myHdfFileId

DpPpAttitudeDataSetNB()
~DpPpAttitudeDataSetNB()
DpPpAddRecord(DpTAttitudeRecord *record)
DpPpSetEndTime(EcTReal* time)
DpPpSetStartTime(EcTReal* time)

myAngleErrorLimits
myAngleRateLimits
myPositionErrorLimit
myVelocityErrorLimit
myContiguousMissingDataLimit
myMissingDataLimit
myMissingDataTimeLimit
myEphemWindowSize
myMinEphemWindowSize
myAttitudeWindowSize
myMinAttitudeWindowSize
myParameterFile

~DpPpAm1AncQaParametersNB()
DpPpReadParameters()
DpPpAm1AncQaParametersNB()

myLength
myLevelZeroFile
myPacketVector

DpPpPacketVectorNB(EcTInt theLength)
DpPpAdvanceVector()
DpPpFillPackets()
DpPpGetCurrentPacket()
DpPpGetFirstPacket()
DpPpGetLastPacket()
DpPpGetLength()
DpPpGetNextPacket()
DpPpGetPreviousPacket()
DpPpInitVector()
operator[](EcTInt index)
~DpPpPacketVectorNB()

application process ID

<Type:class>

Offpage

 - : EcTReal
 - : EcTReal
 - : EcTLongInt
 - : EcTLongInt
 - : DpTEphemerisMetadata
 - : DpPpAm1AncillaryPacketNB*
 - : RWTValVector<EcTInt>*
 - : RWTValVector<EcTInt>*
 - : RWTValVector<EcTInt>*

 - : EcTInt
 - : EcTInt
 - : EcTInt
 +
 + : EcTVoid
 - : EcTVoid

 - : EcTVoid
 +

±

 : PGSt_IO_L0_Packet

±

 : EcTInt = -1

±

 : EcTReal

±

 : EcTInt

±

 : EcTInt

±

 : EcTInt

 + : EcTReal {abstract}
 +
 +
 + : EcTInt
 + : EcTInt
 + : EcTInt
 + : EcTInt
 + : PGSt_SMF_status

 - : DpPpEulerAngle
 - : DpPpEulerAngle
 - : EcTCartVec3
 - : EcTCartVec3
 - : EcTCartVec3
 - : EcTCartVec3
 - : EcTReal
 - : EcTCartVec3
 - : EcTReal

 +
 + : EcTVoid
 + : EcTLongInt
 + : EcTReal
 +
 + : EcTInt
 + : EcTCartVec3
 + : EcTCartVec3
 + : DpPpEulerAngle
 + : DpPpEulerAngle
 + : EcTCartVec3
 + : EcTCartVec3
 + : EcTCartVec3

 - : EcTInt
 - : RWFile*
 - : RWFile*
 - : DpTEphemerisHeader
 - : EcTLongInt
 - : EcTLongInt
 - : RWTValOrderedVector<DpTEphemerisMetadata>
 - : RWTValOrderedVector<EcTInt>
 - : EcTReal
 - : EcTReal

 +
 +
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid
 + : EcTVoid

 - : DpTAttitudeHeader
 - : EcTReal
 - : EcTReal
 - : RWValOrderedVector<EcTInt>*
 - : RWFile*
 - : RWFile*
 - : EcTInt

 +
 +
 + : EcTBoolean
 + : EcTVoid
 + : EcTVoid

 - : DpPpEulerAngle
 - : DpPpEulerAngle
 - : EcTReal
 - : EcTReal
 - : EcTInt
 - : EcTInt
 - : EcTReal
 - : EcTInt
 - : EcTInt
 - : EcTInt
 - : EcTInt
 - : RWFile*

 +
 + : EcTBoolean
 +

±

 : EcTInt

±

 : PGS_IO_L0_VirtualDataSet

±

 : RWTPtrVector<Type>

 +
 + : EcTBoolean

±

 : EcTVoid
 + : Type*
 + : Type*
 + : Type*
 + : EcTInt
 + : Type*
 + : Type*
 + : EcTVoid
 + : Type*
 +

references

processes

{ordered}
n = number of packets in the vector

writes ephemeris to

writes attitude to

4-38 305-CD-027-002

4.3.9 Database Interface View

The Database Interface View (Figure 4.3-13) consists of classes used to provide an interface
between the application code and the Sybase SQL server housing the PDPS database.

4-39
305-C

D
-027-002

Figure 4.3-13. Database Interface View

DpPrDbColVal

DpPrDbConnectRecord

DpPrDbMaster

DpPrDbIF

DpPrDbColValList

myConnection
myConnectionCount

ApplicationClasses

DBTools

DbLib

DpPrDbInterface

myTable
myMemTable
myTempTable

myConnectionRecordList
myDbTable
myDbase
myConnection

EcUtStatus:GetConnection(&userName: const RWCString, &userPassword: const
RWCString, &databaseName:const RWCString, &databaseServer: const RWCString,
&databaseLibrary: const RWCString)
GetDbTable:RWDBTable()
SetDbTable:ECTVoid(dbTable:RWDBTable)
CloseConnection:EcUtStatus(&userName: const RWCString, &userPassword: const
RWCString, &databaseName:const RWCString, &databaseServer: const RWCString,
&databaseLibrary: const RWCString)

myConnection
myTable
myMemTable
myTempTable
myDbase
myReader
myUpdater
myInserter
mySelector
myDeleter

DpPrDbInterface()
~DpPrDbInterface()
OpenConnection()
OpenConnection(userName:const RWCString, userPassword: const RWCString)
BeginTransaction()
RollbackTransaction()
CommitTransaction()
CloseConnection()
SelectAndReadObject(&TableName: const RWCString, &DpPrObject : DpPrClass,
&WhereColumn: const RWCString, &WhereValue: const RWCString)
SelectAndReadObject(&TableName: const RWCString, &DpPrObject : DpPrClass,
&WhereColumnValueList : const DpPrDbColValList)
Select(&TableName: const RWCString, &WhereColumn : const RWCString, &WhereValue:
const RWCString)
Select(&TableName: const RWCString, &WhereColumnValueList : const
DpPrDbColValList)
SelectAndReadColumns(&TableName:const RWCString, &SelectedColumnList: const
RWTValOrderedVector<RWCString>, &ResultedList:DpPrDbColValList,
&WhreColumnValueList:const DpPrDbColValLisst)
ReadObject(&DpPrObject : DpPrClass)
ReadList(&DpPrObjectList : RWTValSlist<DpPrClass>)
ReadList(&DpPrPointerList : RWSlistCollectables)
InsertObject(&TableName : const RWCString, &DpPrObject: const DpPrClass)
InsertObject(&TableName: const RWCString, &KeyValueList: const DpPrDbColValList,
&DpPrObject : const DpPrClass)
InsertObject(&TableName : const RWCString, &KeyColumn: const RWCString,
&KeyValue: const RWDBValue, &DpPrObject : const DpPrClass)
InsertList(&TableName: const RWCString, &DpPrPointerList : RWSlistCollectables)
InsertList(&TableName: const RWCString, &DpPrObject : const
RWTValOrderedVector<DpPrClass>)
UpdateColumn(&TableName: const RWCString, &AssignColumn:const RWCString,
&AssignValue: const RWDBValue, &WhereCoilumn: const RWCString, &WhereValue:
const RWDBValue)
UpdateColumn(&TableName : const RWCString, &AssignColumn: const RWCString,
&AssignValue : const RWDBValue)
UpdateColumns(&TableName : const RWCString, &AssignColumnValueList: const
DpPrDbColValList, &WhereColumnValueList : const DpPrDbColValList)
UpdateObject(&TableName : const RWCString, &DpPrObject : const DpPrClass,
&WhereColumn : const RWCString, &WhereValue : const RWDBValue)
UpdateObject(&TableName: const RWCString, &DpPrObject : const DpPrClass,
&WhereColumnValueList : const DpPrDbColValList)
DeleteRows(&TableName: const RWCString, &WhereColumn : const RWCString,
&WhereValue : const RWDBValue)
DeleteRows(&TableName: const RWCString, &WhereColumnValueList: const
DpPrDbColValList)
GetNumOfRows(&TableName: const RWCString)
GetCriterion(&Criterion: RWDBCriterion, &ConstraintList: const DpPrDbColValList)

 myColValList

DpPrDbColValList(&listObject:const DpPrDbColValList&)
operator=(&listObject:const DpPrDbColValList&)
operator==(&listObject:const DpPrDbColValList&)
operator[](index:IcTInt)
AppendColumnValue(columnName&:const RWCString, value&:const RWDBValue,
equalStatus:DpTPrDbEqualType)
AppendValue(value&:const RWDBValue, equalStatus:DpTPrDbEqualType)
ColumnAt(value&:const RWDBValue, returnColumn&:RWCString)
ValueAt(column&:const RWCString, returnValue&: RWDBValue)
RemoveColumnValue(columnName&:const RWCString, value&:const RWDBValue,
removeType:DpTPrDbRemoveType)
RemoveValueKey(value&:const RWDBValue, removeType:DpTPrDbRemoveType)
RemoveColumnKey(columnName&:RWCString, removeType:DpTPrDbRemoveType)
Entries()
Clear()

myBackupConnection
myConnection
myMemTable
mySelector
myUpdater
myDeleter
myMemTableList
mySelectedColumns
myStatus
myTransactionCount
mySelectWhereFlag
mySelectColumnsFlag
MyUpdateWhereFlag
myDeleteWhereFlag
myUserName
myUserPassword
myDatabaseName
myDatabaseServer
MyDbLibraryName

DpPrDbIF()
OpenConnection()
Status()
GetConnectionStatus()
BeginTransaction()
RollbackTransaction()
CommitTransaction()
TransactionStatus()
InsertRow()
Select()
SelectAndReadColumns()
UpdateColumn()
UpdateColumns()
DeleteRows()
SetTableForComplexWhere()
SelectColumnsWhere()
SelectWhere()
UpdateColumnsWhere()
DeleteRowsWhere()
GetMaxNum()
GetMinNum()
GetNumOfRows()
GetStringValuesAt()
GetIntValuesAt()
GetCriterion()
GetSelectedColumns()
StoreMemTable()

myDbTable
myColumn
myValue
myEqualStatus

DpPrColVal(dbColVal&: const DpPrDbColVal)
operator=(dbColVal&: const DpPrDbColVal)
operator==(dbColVal&: const DpPrDbColVal)
SetColumn(column&:const RWCString, equalstatus:DpTPrDbEqualType)
SetValue(value&:const RWDBValue, equalstatus:DpTPrDbEqualType)
SetColumnValue(column&:const RWCString, value&:const RWDBValue,
equalStatus:DpTPrDbEqualType)
SetEqualStatus(equalstatus:DpTPrDbEqualType)
GetEqualStatus()
GetColumnValue(column&:RWCString, value&:RWDBValue)
Column()
Value()
GetCriterion()
GetCriterion(dbTable:RWDBTable const)
operator&&(crierion&: const RWDBCriterion, colValObject&:const DpPrDbColCal)
operator&&(colValObject&:const DpPrDbColVal, criterion&: const RWDBCriterion)
operator&&(colValLeft&: const DpPrDbColVal, colValRight&:const DpPrColVal)
operator ||(crierion&: const RWDBCriterion, colValObject&:const DpPrDbColCal)
operator ||(colValObject&:const DpPrDbColVal, criterion&: const RWDBCriterion)
operator ||(colValLeft&: const DpPrDbColVal, colValRight&:const DpPrColVal)
SetColumnValue(column&:const RWCString,value&:const RWDBValue,
equalStatus:DpTPrDbEqualType)

Offpage

Offpage

uses non-object related operations

 - : RWDBTable
 - : RWDBTable
 - : RWDBDatabase
 - : RWDBConnection

 +

 +
 +

±

 - : RWDBConnection
 - : RWDBTable
 - : RWDBMemTable
 - : RWDBTable
 - : RWDBDatabase
 - : RWDBReader
 - : RWDBUpdater
 - : RWDBInserter
 - : RWDBSelector
 - : RWDBDeleter

 +
 +
 + : DpTPrDbStatus
 + : DpTPrDbStatus
 + : DpTPrDbStatus
 + : DpTPrDbStatus
 + : DpTPrDbStatus
 + : DpTPrDbStatus
 + : DpTPrStatus

 + : DpTPrStatus

 + : EcTInt

 + : EcTInt

 + : DpTPrStatus
 + : EcTInt
 + : EcTInt
 + : DpTPrDbStatus
 + : DpTPrDbStatus

 + : DpTPrStatus

 + : EcTInt
 + : EcTInt

 + : EcTInt

 + : EcTInt

 + : EcTInt

 + : EcTInt

 + : EcTInt

 + : EcTInt

 +
 + : DpPrDbColValList&
 + : EcTBoolean
 + : DpPrDbColVal&
 + : EcTVoid

 + : EcTVoid
 + : const EcUtStatus
 + : const EcUtStatus
 + : EcTInt

 + : EcTInt
 + : EcTInt
 + : const EcTInt
 + : EcTInt

 - : RWDBConnection
 - : RWDBConnection
 - : RWDBMemTable
 - : RWDBMemTable
 - : RWDBUpdater
 - : RWDBDeleter
 - : RWTValSlist<RWDBMemTable>
 - : RWTValSlist<RWCString>
 - : EcUtStatus
 - : EcTInt
 - : DpTPrDbFlag
 - : DpTPrDbFlag
 - : DpTPrDbFlag
 - : DpTPrDbFlag
 - : RWCString
 - : RWCString
 - : RWCString
 - : RWCString
 - : RWCString

 +
 + : EcUtStatus
 + : EcUtStatus
 + : DpTPrDbConnectionStatus
 + : EcUtStatus
 + : EcUtStatus
 + : EcUtStatus
 + : DpTPrDbFlag
 + : EcUtStatus
 + : EcUtStatus
 + : EcUtStatus
 + : EcUtStatus
 + : EcUtStatus
 + : EcUtStatus
 + : EcUtStatus
 + : EcUtStatus
 + : EcUtStatus
 + : EcUtStatus
 + : EcUtStatus
 + : EcUtStatus
 + : EcUtStatus
 + : EcUtStatus
 + : EcUtStatus
 + : EcUtStatus

±

 : EcUtStatus

±

 : EcUtStatus

±

 : EcUtStatus

uses

create column-value list

uses
interacts with

uses

uses

contains

use for complex where clauses

perform non-object related
database manipulations

perform object-related
database manipulations

uses

contains

uses

uses

	4. PRONG - Processing CSCI
	4.1 CSCI Overview
	4.1.1 Processing CSCI Design Rationale
	4.1.2 Historical Design Transitions
	4.1.3 COTS Strategy
	4.1.4 COTS Selection
	Figure 4.1-1. Scheduling Jobs Using AutoSys
	Figure 4.1-2. Initiating Processing Components Using AutoSys

	4.1.5 Database Interface

	4.2 CSCI Context
	4.3 CSCI Object Model
	4.3.1 Processing CSCI Component View
	Figure 4.3-1. Processing CSC Level Object Model

	4.3.2 COTS Manager View
	Figure 4.3-2. COTS Manager Object Model

	4.3.3 Data Management View
	Figure 4.3-3. Data Management Object Model

	4.3.4 PGE Execution Management View
	Figure 4.3-4. Execution Management Object Model

	4.3.5 Resource Management View
	Figure 4.3-5. Resource Management Object Model

	4.3.6 Quality Assurance Monitor View
	Figure 4.3-6. QA Monitor Object Model

	4.3.7 DAAC Non-Science Quality Assurance View
	Figure 4.3-7. Metadata QA Object Model

	4.3.8 Data Pre-Processing View
	Figure 4.3-8. TRMM Data PreProcessing View
	Figure 4.3-9. EDOS Data PreProcessing View
	Figure 4.3-10. TRMM OnBoard Attitude Object Model
	Figure 4.3-11. TRMM Definitive Orbit Object
	Figure 4.3-12. AM-1 OnBoard Orbit and Attitude Object Model

	4.3.9 Database Interface View
	Figure 4.3-13. Database Interface View

